Detection of Boulders on Ryugu Using Deep Learning

- Suomi Seki^{1, 2}, Toru Kouyama², Xuanchao Fu^{1, 2}, Wenhao Shen^{1, 2}, Chikatoshi Honda³, Ichiro Yoshikawa¹
- (¹The University of Tokyo, ² National Institute of Advanced Industrial Science and Technology, ³The University of Aizu)

Contents

Introduction

- Background
- Previous Studies
- Purpose

Method

- Instance Segmentation
- Mask R-CNN

Data Preparation

- Data Source
- Dataset

Results

Future work

Background

- Asteroid Ryugu: formed through reaccumulation following the catastrophic disruption of its parent body [Sugita 2019 etc.]
- Comparing regional characteristics of boulder number density, size, and shape on asteroids reveals geological processes experienced by the asteroid.

For example :

- Number Density reveals
 - The movement of boulders due to impacts from other celestial bodies or changes in gravity. [Michikami 2019]
- Size Frequency Distribution reveals
 - The behavior of boulders around artificial craters. [Michikami 2022, Ogawa 2022]

[Sugita 2019] Sugita, S, et al. "The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes." Science 364.6437 (2019): eaaw0422.

[Ogawa 2022] Ogawa, K., et al. "Particle size distributions inside and around the artificial crater 3 / 23 produced by the Hayabusa2 impact experiment on Ryugu." Earth, Planets and Space 74.1 (2022): 1-10.

- Introduction

Previous Studies – Boulder Number Density

- Ryugu boulder number density, boulders > 5 m
- Ryugu, Bennu: top-shaped, equatorial rigde
 - boulders migrated toward the equatorial direction
- Possible reason for the low number density in the equatorial region
 - Recent migration trends: Equator \rightarrow higher latitudes (Sugita 2019)
 - Smaller boulders (particles) are easier to move
 - Larger boulders are buried beneath small boulders

Number of boulders per km²

[Michikami 2019] Michikami, T, et al. "Boulder size and shape distributions on asteroid Ryugu." Icarus 331 (2019): 179-191.

The size frequency distribution of boulders on the asteroid follows a power-law.

This distribution is utilized for comparisons between different regions and with other celestial bodies.

Boulder diameter [m]

- Introduction

Mihcikami 2019

Compare boulder size frequency distributions in different regions of Ryugu

- Introduction

no tendency over the size range

- cf. Michikami 2019
- How power-indices are correlated with boulder size ranges ? \rightarrow next slide

- Introduction

- Correlation between min diameter and power-index
- Weak correlation

Area43, 55, 66 → crater rim

- Small Carry-on Impactor experiment
- Fine boulders inside the crater were moved
- Boulders were fragmented during the experiment

Purpose of the Research

Obtaining a global-scale size frequency distribution manually is challenging

- Previous research: 1,000 boulders per image \Leftrightarrow ONC/v-band, close-up: 300 images
- Automate boulder detection using deep learning
- Obtaining boulder size, shape and other characteristics For Example :
 - boulders below 5 meters in size on a global scale
 - boulders inside and outside the artificial crater

Contributions :

Utilizing the ONC archive

Publish deep learning models and datasets

Publish global boulder database (future plan)

Instance Segmentation is a deep learning task that divides an image into polygons

- **cf.** Object Detection
 - Enclosing objects with bounding boxes
 - By Instance Segmentation, contour and major axis angle can be obtained
- Preparing Training Data
 - Annotated data for boulders
 - Crowdsourcing

Images from https://cocodataset.org/

Mask R-CNN

Components

- Backbone Network: Extracts feature maps
- Region Proposal Network (RPN): Proposes candidate object regions
- ROI Align: Aligns feature maps to predict accurate masks
- Workflow
 - Bounding Box Prediction: Identifies object locations
 - Mask Prediction: Refines object segmentation at the pixel level

He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference on computer vision. 2017.

Data Source

Ryugu: Hayabusa2, Optical Navigation Camera (ONC, Telescopic)

7-band spectral camera

Band	ul	b	V	Na	W	Х	Р
Center waveleng th(nm)	397.5	479.8	548.9	589.9	700.1	857.3	945.1

• Resolution: ~0.006°/pix = 10 cm/pix at 1 km altitude

Data Source

• Data release from ISAS/JAXA DARTS (Ryugu proximately phase) http://darts.isas.jaxa.jp/pub/hayabusa2/onc_bundle

- Data Preparation

Dataset - Overview

Dataset detail

- Altitude < 5 km, 2 cm/pix
- 275 images (training: 220, validation: 27, test: 28)
- 20420 labels, COCO json style

Boulder sizes in the training data

- Data Preparation

Location of images used for the training data

Dataset - Samples

Input

https://github.com/suomiosu/Ryugu-boulder-dataset

- Data Preparation

Evaluation Metrics

Pixel-level evaluation metrics are unnecessary

- Some boulders are not included in the Ground Truth
 - minimize false negatives \rightarrow maximize Recall
 - Boulders not present in the Ground Truth are compared against the size frequency distribution
- Calculating Recall based on IoU criteria
 - IoU measures the overlap between predicted and ground truth regions.

 $IoU = \frac{Area of Intersection}{Area of Union}$

Setting IoU > 50% as the threshold for correctness

 $Recall = \frac{number of correctly detected boulders}{number of boulders in Ground Truth}$

Results with Mask R-CNN, 1024*1024 images

image size: 1024 px, quantity: 220 images, iteration: 3,600

Results with 512*512 images

image size: 512 px, quantity: 1,320 images, iteration: 2,400

Detected boulders in the range of 10 ~ 40 pixels increased

• Detection accuracy (recall) for 30~40 pixels: 97%

Recall = (Num of correctly detected boulders) / (Num of annotated boulders in the GT labels)

Results with 256*256 images

- - the number of parameter update cycles.

image size: 256 px, quantity: 2,640 images, iteration: 2,500

The detection of boulders not present in the training data became possible. • Boulder features could be extracted through image scaling.

• The increase in the number of training data instances led to an increase in

18/23

Boulder Size Frequency Distribution

Compared the boulder size frequency distribution in Michikami 2022 with detected boulders by the deep learning model

Boulder size frequency distribution in Michikami 2022

Boulder size frequency distribution detected by the deep learning model

Boulder Size Frequency Distribution

- Results

- Processing time per image: 0.04 seconds (size: 256x256 pixels) Detection time for the left boulder: 5.12 seconds
- Visual inspection results align within the range of 0.1 to 1 meter
- Fewer detections for boulders with <50 pixels (0.15m to 2.25m)</p>
- The detection accuracy does not correspond to visual inspection

Current work

Training with scaled images (enlarged or reduced)

• no tendency over size

- Reducing the depth of the Background and RPN layers
- Modifying loss functions and validation metrics
- Increasing the number of samples in the dataset

Current work

Training with scaled images (enlarged or reduced)

- no tendency over size
- Reducing the depth of the Background and RPN layers
- Modifying loss functions and validation metrics
- Increasing the number of samples in the dataset

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. *Advances in neural information processing systems*, 28.

Conclusion and Future Work

The goal of this study is to create a boulder database for Ryugu using ONC archive data

- released annotation data for 275 images with boulders of 30 pixels or larger
- using deep learning to achieve global-scale boulder detection
- By using Mask R-CNN model,
 - Boulders in the annotation, >30pix Recall: over 90%
 - The detection accuracy of small boulders can be improved

Currently working on improving detection accuracy for boulders not in the annotation, <30pix</p>

- Training with scaled images (enlarged or reduced)
- Reducing the depth of the Background and RPN layers
- Modifying loss functions and validation metrics
- Increasing the number of samples in the dataset
- Evaluation metrics
 - Detection accuracy of 95% for ground truth labels.
 - Reproduce boulder size frequency distributions in previous studies