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Introduction

e Raster Miner is an open-source software for discovering knowledge hidden
In Raster Data.

* Availability: GitHub
e Liscence: GNU V3
e Platforms: Windows and Mac

* Type of Execution: GUI, Terminal, and Python.



Knowledge Discovery Tasks

Data preprocessing

——

Preprocessing Imputation Clustering Image Fusion One Class Classification

RasterMiner: Discovering Knowledge Hidden in Raster Images
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This presentation focuses on Imputation.
Which is a new plugin in Raster Miner

L Status : Idle

Fig. 1. Front-end of Raster Miner
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Data postprocessing
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Raster Converter
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Data preprocessing:

* Converts raster images into tsv files
* Support various formats of raster images
* |bl, tiff, geotiff ...

Machine learning:

e Contains techniques for various ML tasks
* ML topics currently available are:
1. Imputation
Clustering
Image Fusion
One Class Classification
Pattern Mining

ke wnN

Data Postprocessing:
Converts the tsv data back into raster/tiff format




Imputation

@ RasterMiner: Discovering Knowledge Hidden in Raster Images &) RasterMiner: Discovering Knowledge Hidden in Raster Images
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Fig. 2a. Basic Imputation Techniques Fig. 2b. Advanced Tensor-based Imputation Techniques
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Introduction: A New Space Race

Kaguya Satellite Chandrayan-1 Satellite Chandrayan-2 Satellite

Fig. 1. Satellites Collecting Lunar Surface Data 8



Introduction: Missing Pixel Data Problem

missing pixels

Fig.4. Raster data of Moon’s surface gathered by Kaguya Satellite




Introduction: Missing Pixel Data Problem

Missing data is shown in black

Fig. 5. Raster data of Moon’s surface gathered by Chandrayan Satellite

Source: https://pds-imaging.jpl.nasa.gov/documentation/Isaacson_M3_Workshop_Final.pdf



Introduction: Existing Solutions and Their Limitations

* k-Nearest Neighbors Solution
* fill in the missing pixel value using its neighbors value

average value of its neighbors

Missing pixel

?=(8+7+7+5+5+5+6+7)/8

NON =

=6.25 (or 6)

o0

 Limitation: Cannot be applied if most of the data is missing 11



Introduction: Existing Solutions and Their Limitations

* Machine Learning

 Neural Networks
* GANSs

* Limitation:
* Need much data for model building.
* Unfortunately, not much data is available
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Problem Definition

* Predict the missing data in a highly corrupt image that has little
training data

Imputation output
algorithm

corrupt image

imputed image
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Proposed Approach: Tensor Completion

e |dea:

* Model raster image as a tensors using Tucker decomposition and Canonical
Polyadic decomposition
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Fig. 6. Raster Data as Tensors
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Challenges

e Several Tensor Solutions exists
* SiLRTC (simple Low-Rank Tensor Completion)
 HaLRTC (High-accuracy Low-Rank Tensor Completion)
e CP-ALS (Canonical Polyadic - Alternating Least Squares)
e CMTF-OPT (Coupled Matrix and Tensor Factorization -Optimization)

* No universally accepted best solution exists for predicting missing
data for any given dataset



Our Solution
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Experimental Results
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Experimental Results

RSE vs Missing Pixels
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Fig. 4. Comparison between various approaches on varying the percentage
of missing pixels on Kaguya Dataset 1(left) and Chandrayan Dataset 1(right)
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Fig. 5. Study to compare the run time of different approaches on varying 71

the percentage of missing pixels on Kaguya Dataset 1(left) and Chandrayan
Dataset 1(right)



Experimental Results
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Conclusions

* This paper tackled the missing pixel problem in raster images using
Tensor Completion Technique.

* Experimental results demonstrate that CMTF-OPT technique
performed better against other imputation techniques.

* CMTF-OPT was found to be computationally expensive than most of
the tensor-based imputation techniques.
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